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Abstract: The field of view of optical coherence tomography angiography (OCTA) images of
the retina can be increased by montaging consecutive scans acquired at different retinal
regions. Given the dramatic variation in aberrations throughout the entire posterior pole
region, it is challenging to achieve seamless merging with apparent capillary continuity across
the boundaries between adjacent angiograms. For this purpose, we propose herein a method
that performs automated registration of contiguous OCTA images based on invariant features
and uses a novel montage algorithm. The invariant features were used to register the
overlapping areas between adjacently located scans by estimating the affine transformation
matrix needed to accurately stitch them. Then, the flow signal was compensated to
homogenize the angiograms with different brightness and the joints were blended to generate
a seamless, montaged wide-field angiogram. We evaluated the algorithm on normal and
diabetic retinopathy eyes. The proposed method could montage the angiograms seamlessly
and provided a wide-field of view of retinal vasculature.

© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement

1. Introduction

Since the first time-domain optical coherence tomography (OCT) [1] article was published in
1991, OCT technology has developed rapidly. With faster scanning using Fourier-domain
modalities, current OCT devices allow acquisition of three-dimensional data representing the
retinal layered structure rapidly. Optical coherence tomography angiography (OCTA) detects
the variation of OCT signal reflectance over scans repeated at the same location in order to
evaluate the microcirculation flow in vivo; allowing sensitive, fast (< 3 seconds), and high
resolution volumetric imaging of the retinal flow [2]. This technique has demonstrated utility
in key ophthalmic diseases such as diabetic retinopathy, age-related macular degeneration,
and glaucoma, allowing visualization of vascular details. In addition, OCTA allows more
reliable quantification of the vasculature changes [3]. With the improvement of the hardware
and the progress of processing algorithms, a current research endeavor in OCTA is to increase
the achievable field of view (FOV) of images. Previous studies have shown that wide-field
OCTA can reveal more clinically useful information [4,5].

The availability of faster light sources has allowed acquisition of wide-field OCTA in a
single scan [6,7]. This approach to increase the FOV faces two fundamental challenges. First,
the retinal curvature covered by the large FOV and limited focusing depth of OCT result in B-
scans that are only in focus centrally, and defocused at the periphery [8]. Secondly,
propagation of the scanning beam across a larger FOV induces larger wavefront aberrations
that are difficult to compensate for without the assistance of adaptive optics [9]. As a
consequence, the beam size at the peripheral retina is large and aberrant, deteriorating the
lateral resolution of the instrument and degrading the images. An alternative to wide-field
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scanning is to montage smaller, but high-quality scans with overlapping areas to create a
wide-field image. This approach is more cost-effective and amenable to improvement using
the existing equipment.

The main task of mosaicking techniques that reproduce wide-FOV from stitching small-
FOV scans is to conceal the seam between individual angiograms by ensuring capillary
overlap and background level homogeneity. Previous research on montaging retinal images
used fundus images with large vessel patterns and intersections to register overlapping areas
as well as post-processing of the edges in order to get a seamless, wider fundus image [10—
16]. Accomplishing the same task in OCTA requires the use of more challenging image
processing techniques, given the finer vessel details visualized by OCTA. Moreover, in order
to attain a large FOV by mosaicking, the individual scans need to be large enough to not
require an unreasonable number of acquisitions from the subject, making 3 X 3-mm scans
impractical. However, the standard 6 x 6-mm angiograms are not isoplanatic. For that FOV,
the retinal curvature in the periphery of posterior pole or in near-sighted eyes already
produces a significant deformation, and further image processing is required to correct for an
adequate blending with adjacent patches.

In our previous research montaging OCTA images, we developed a parallel-strip
registration algorithm in 2D [17] and 3D [18]. This method focused on removing motion
artifacts and required a large overlapping area. Here, we propose a new mosaicking solution
in which patches of the retina with limited overlapping areas are registered by a method based
on invariant features [19,20]. The registered patches are seamlessly stitched by a panoramic
image seamless stitching routine [21-24] using flow signal compensation. This method
allows ultra-wide visualization of the retinal flow by OCTA, with a great potential to better
assist clinicians in the assessment of retinal diseases.

2. Data acquisition and preprocessing

We developed an algorithm to montage separate OCTA images in order to achieve a wide
field of view. Although we demonstrated the algorithm mainly on scans centered on the optic
disc and macula, it can be applied on the scans through to the back of the eyes. The mean
distance between disc and fovea was 4.76 £ 0.34 mm [25], and the mean disc-fovea angle was
7.76 + 3.63° [26]. Assuming the distance from the center of the FAZ to the optic disc is
approximately 5 mm horizontally and about 1 mm vertically, if the two scans are perfectly
centered the overlap between them would be approximately 1 mm horizontally and 5 mm
vertically, with variations between subjects.

Participants were scanned using a 70-kHz commercial AngioVue OCTA system (RTVue-
XR; Optovue, Fremont, CA) with the wavelength centered at 840nm. Scans covered a 6 x 6-
mm area, using a high-definition scan pattern with 400 x 400 sampling rate (15um/pixel).
Two repeated B-scans at the same location were acquired and processed by the commercial
version of the split-spectrum amplitude-decorrelation angiography (SSADA), which is
sensitive to capillary flow. A horizontal-priority and a vertical-priority scan of the same area
were collected and registered to suppress microsaccadic motions artifacts [27]. Ten eyes
diagnosed with diabetic retinopathy (DR) and 10 normal eyes were scanned at different
retinal landmarks to generate the wide-field OCTA. The DR eyes were scanned centering on
the disc, fovea and temporal regions, ensuring a certain overlap between adjacent scans.
Normal eyes were scanned centering on the disc and fovea to evaluate the proposed
algorithm.

During data preprocessing, retinal layers were segmented by a directional graph search
algorithm incorporated in the COOL-ART software for OCTA image processing [28] (Fig.
1(A)). Applying the projection-resolved algorithm [29,30], we could remove projection
artifacts and visualize the retinal capillary plexuses in three different slabs located at different
depths [31] (Fig. 1(B-G)), which are defined as the superficial vascular complex (SVC), the
intermediate capillary plexus (ICP), and the deep capillary plexus (DCP). The combination of
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three plexuses formed the inner retinal angiogram. Since the inner retinal angiogram is rich in
microvascular details, it was used to detect the invariant features and to further estimate the
optimal affine matrix to montage the en face angiograms of SVC, ICP, DCP, and the inner
retina itself.

Fig. 1. Illustration of retinal layer segmentation and angiogram generation on SVC (inner 80%
of the ganglion cell complex (GCC)), ICP (outer 20% of the GCC and inner 50% of the inner
nuclear layer (INL)), DCP (outer 50% of the INL and outer plexiform layer (OPL)), and inner
retina (between the inner limiting membrane (ILM) and the OPL).

3. Methods

There were three key steps to generate the montaged, wide-field OCTA: accurate estimation
of the affine transformation matrix, flow signal compensation, and seamless blending of the
edge of overlapping areas. The estimated affine transformation matrix contains the global
information used to rotate and shift one image to montage it with the other. The fine
registration in the edge area registered the vessels regionally in order to smooth the edges.
The flow signal compensation equalized the flow signal to generate a homogenized wide-field
OCTA.

3.1 Algorithm overview and data pre-processing

The disc angiogram was selected as the target image (/;) and the macular angiogram was the
moving image (/,). Then, the invariant features were detected and matched by Speed-Up
Robust-Features (SURF) algorithm [32], and further fine matching in local area followed by
Random Sampling Consensus (RANSAC) algorithm [33] were applied to filter the outliers.
The remaining paired points were used to infer the affine matrix. Then, in order to generate an
even and seamless wide-field angiogram, a post-processing step including flow signal
compensation and seamless blending was applied. The algorithm framework is described in
Fig. 2.

Invariantfeatures based registration and montage Post-processing
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Fig. 2. Overview of the invariant features-based automated registration and montage algorithm.
SURF — Speed-Up Robust Features.

3.2 Invariant features-based registration and montage
3.2.1 Affine transformation and features detection

Stitching the moving angiogram (/,,) to the target angiogram (/,) consists of re-arranging the
pixels of the moving angiogram to match their equivalents in the overlapping area of the
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target angiogram. The transformation needed for 2D image stitching can be modeled by the
FREAaffine transformation matrix:

a, ap a4y
P =4Apy, A=|a, a, ay (1
0 0 1

where py and p; are matching points in /, and I,. The affine transformation matrix A includes
the parameters for rotation, scaling, shifting, flipping and shear mapping. There are 6 degrees
of freedom, hence at least 3 matching points are needed to infer the affine transformation
matrix.

Scale-invariant feature transform (SIFT) [34] and SURF are popular local feature
detection and descriptor methods in computer vision. Both are invariant with rotation, scaling,
and intensity variation. Since SURF is more efficient and robust than SIFT, we chose SURF
as the invariant features method to select the matching points used to estimate the affine
transformation matrix.

SURF detects the features on points of interest in multi-scales, where the points of interest
are detected by the determinant of the Hessian matrix following

det(H) = Dy Dy, (09D, ) )

where D,,, D,, and D,, are the approximation second derivative of a Gaussian filter. To ensure
the invariability of scaling and rotation, the SURF features were detected in multi-scales, and
the dominant orientation of the Haar wavelet features were recorded as the SURF orientation
descriptor. Furthermore, the summaries of the Haar wavelet features of the neighbors were
used to generate the unique and robust SURF descriptors.

The number of SURF features that can be detected is variable, but usually about 800 of
SURF features were detected on the OCTA of healthy eyes, which were presented using
green crosses in the optic disc angiogram (Fig. 3(A)). Each feature contained location,
orientation, scale, and feature descriptors (Fig. 3(B)). In the following step, the SURF
descriptors were used to match the detected points, whereas the scale and orientation were
used to filter the mismatched pairs.

Fig. 3. SURF features detection on OCTAs. (A) The green crosses are the locations of detected
features on the angiogram. (B) Some of the SURF features in A were selected randomly for
clear representation of orientation and scale. The scale of features is represented by the radius
of the green circles. The direction of features and scale is represented by the green line
highlighted with white arrows in C and D. (C-D) Magnified insets correspond to the regions
indicated by black and blue boxes in B.



Research Article Vol. 10, No. 1| 1 Jan 2019 | BIOMEDICAL OPTICS EXPRESS 124 I

Biomedical Optics EXPRESS -~

3.2.2 Angiograms registration and montage

Each detected invariant feature had their unique feature descriptor. The key points with same
sign (-/+) of the det(H) would conduct the matching process. We compared the invariant

features from 7, with their corresponding ones in /,, using the sum of squared differences
(SSD):

Paired[Pt (l'),Pm (j)]:frelig{SSD[e (i)’P”’ (])}} ®

where P,(j) is the position of j-th SURF feature in 7, P(i) is the position of the i-th SURF
feature in 7,. The nearest two points were paired.

OCTA contains a rich vasculature, the image content is monotonic, and the local features
are similar. For this reason, if the points of interest were grossly matched based on the feature
descriptors only (Eq. (2), many of them could be erroneously paired (Fig. 4). These
mismatches would cause failure of the random sample consensus (RANSAC) algorithm in
trying to infer the affine transformation matrix A. The RANSAC algorithm was designed to
find a homograph matrix (H) that could get the greatest number of pairs that can be properly
transformed. Therefore, before applying RANSAC, we imposed two additional restrictions to
improve the matching accuracy.

For each pair, one point was taken from the moving image (/,) and represented by P,
whereas the other was taken from the target image (/;) and represented by P,. The SURF
features of P, and P, were represented by (O,,, S, D,) and (O, S, D,), where O is the
orientation, S is the scale, and D is the feature descriptor. D was already used to grossly pair
the SURF points. Then we used the orientation O,, and scale S, to locally rotate and resize the
moving image and calculate the correlation with the target image in the paired local area (Fig.
5). The differences of the orientation and scale between the two points of interest were
calculated by:

AO=0, -0,

AS:S% @

If -7/8<A0 <a/8 and 1/2<48<2, the points would be kept for the further descriptor comparison
using Eq. (3). Otherwise, the two points would be marked with an “unmatchable” flag,
assuming that scale and orientation should not have changed much between two adjacent
scans. Some correctly matched and mismatched points were extracted from Fig. 4 to illustrate
the differences of scale or orientation between mismatched points (Fig. 5).



Vol. 10, No. 1| 1 Jan 2019 | BIOMEDICAL OPTICS EXPRESS 125 I
Biomedical Optics EXPRESS

lines.

scale

Fig. 5. Illustration of the scale and orientation of paired points. Al, A2 were correctly paired
points of interest; their scale and direction were very similar. B1, B2 were mismatched points,
for which both direction and scale were very different. C1, C2 were also mismatched points,
where the scale is similar but the difference of direction was great. D is the illustration for the
scale and direction restriction for feature matching. The scales of A, B C and D are 1.65 x
1.65-mm, 1.3 x 1.3-mm, 1.65 x 1.65-mm and 0.9 x 0.9-mm, separately.

After the first restriction in Eq. (4) is imposed, and for each remaining pair of points, two
rectangular areas of size 21 x 21-pixel were extracted from the target and moving images,
surrounding the pixels in the pair. The local areas I’ surrounding the ™ pair were represented
by I'(k) and I',(k). Then, I',,(k) was resized and rotated to register with the I',(k), following

1L =T[R(1,,~70),A8™ | (5)
where R is the rotation operation, T is the resize operation, 40 is the rotation parameter, and
A4S is the rescaling parameter. Then, the second restriction was imposed, consisting of

evaluating the correlation of the local areas by:

C' = Cor(1.(k), I, (k)) (6)
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The areas surrounding truly matching points exhibited high correlation when aligned. The
pairs with correlation C lower than a threshold value of 0.5 were also filtered out. By doing
this, the SURF descriptors and image content of highly matching points were reserved (Fig.
6).

After most outliers had been filtered out (Fig. 6), the RANSAC algorithm could be
employed on reserved pairs to further remove the remaining mismatching pairs (Fig. 7) and
then recognize the registration matrix. The number of available pairs always exceeded the
minimum of 3 points required by RANSAC. The least squares approach was used to infer the
affine transformation matrix 4 At this point, the moving angiogram (/,,) was well montaged

onto the target angiogram (/;), but the whole angiogram exhibited an uneven appearance and
the seam was visible (Fig. 8).

Fig. 6. Illustration of the pairs reserved for the RANSAC input after local area verification by
imposition of the two restrictions described in section 3.2.2.

Fig. 7. lllustration of the pairs reserved after the last step of mismatch removal using random
sample consensus (RANSAC) algorithm.
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Fig. 8. Angiography montage with visible seams

3.3 Flow signal compensation and seamless blending

Aiming at homogenizing the wide-field angiogram, post-processing consisting of flow signal
compensation and seamless blending was performed.

Two methods were used to compensate the flow signal: structural reflectance-based
compensation and flow signal-based compensation.

The structural reflectance was obtained from the OCT en face projection and used a bias
field map to compensate the angiogram:

. Mean(G(1,))
Ic(A) =1, G(1,) (7

where, 1, is the original angiogram image, I is the en face mean projection of the structural
reflectance, and G(+) is the Gaussian filter. The intensity corrected angiogram /.4, reduced the
effect of structural reflectance variation on flow signal.

Then, flow signal based compensation was applied, inspired by the gain compensation
algorithm described in [24]. This task was accomplished by minimizing an error function:

e :%z[ab(m(“m)_ﬂ]c(t)(ut)]z ®

where N is the number of overlapping pixels, u,, and u, are the overlapping pixels in /,, and I,
with u,, = Au,, and a and f are gain parameters that need to be optimized. In our application,
the o and B were restricted, which were both no less than 0.5 and no more than 2.

After compensation, the flow signal exhibited global uniformity. However, the transition
of the flow signal from one angiogram to the other was discontinuous and the vasculatures
were not perfectly registered at the seams, and hence the edge was visible. Flow signal
blending was necessary to obtain a seamless montage angiogram. The multi-band blending
algorithm described in [24] was simplified and applied in this study. The flow signal was
fused in multi-scale with a fusion weights map decreasing gradually from 1 to 0 from one
angiogram to the other across the seam (Fig. 9). Weights maps for the target /, and the moving
1,, images were represented by W, and W,,. The center of the weights map was located on the
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seam, where the weight is 0.5 on both weights maps. The angiograms were filtered by 2D
Gaussian kernels with multiple scales; the high-frequency information was extracted by

Diﬁ(k): Go‘(k)([)_Go'(kH)(I) 9)
ok+1)=2*c(k)
When k = 0, we assign to G,([) the original image /
The information on the scale was blended by

I, (k) =W, xDiff (t,)+ W, X Diff (m,) (10)
wAw,=1
where [,(k) is the blended image on scale k, I, is the weights map for the target angiogram,
and W, is the weights map for moving angiogram. The weights maps vary within [0, 1] from
the one side of the seam to other. The center of the weights map is 0.5, aligning with the
seam. The weights maps were illustrated on Fig. 9. Diff(#;) and Diff(m,) are the detected Diff’
values in Eq. (9) for the target and moving angiograms separately.
On all scales, the blended images were summed up to get the seamless wide-field
angiogram:

[autput :ilb (k) (11)

k=0

Where N is the number of scales, and /,,,, is final montaged seamless wide-field angiogram.
In this study, N = 4.

Comparing the montaged image after seamless blending (Fig. 10(A)) with the montaged
angiogram without flow signal compensation in Fig. 8, the transition of the first seems
smoother. By inspecting local areas about the seam, the vasculature exhibited a continuous
appearance across the seam (Fig. 10(B-C)).

W, w,

t m
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Fig. 9. Illustration of the seamless blending routine.
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Fig. 10. The montaged seamless angiogram applying flow signal compensation and seamless
blending. (B) and (C) represent the detail capillary network within the green and blue
rectangles in (A).

3.4 Bundle processing

As mentioned previously, this invariant features-based automated registration and montage
algorithm is not limited to two angiograms only. For the merging of multiple angiograms we
designed the bundle processing strategy described below.

First, a target angiogram needs to be pre-assigned and used as the reference for the
montage; all other moving angiograms would be stitched to it one by one. Utilizing the
proposed registration method in section 3.2, the invariant features of all input angiograms
were paired each other. The image connection would be sketched out based on the cluster of
the paired points. The pairs only appeared in the overlapping area and were located in a
restricted area. The cluster of the paired points in the moving image closer to the target image
had priority to be montaged. Once the montage was completed, the resulting angiogram
would be updated as the target image, to be further montaged with the following moving
angiogram.

4. Results

This proposed method was implemented using Matlab 2018a (Mathworks, Natick, MA)
installed on a computer with Intel (R) Core(TM) i7-6800K CPU @ 3.4GHz and DDR4 64GB.
It could generate a seamless wide-field OCTA by stitching two OCTAs within 15 seconds.

To evaluate the montage accuracy and the continuity of vasculature across the seams, the
difference and correlation of flow signal between opposite sides of the seams were calculated
on the angiography montage of 10 normal eyes. For evaluation, disc and macular inner retinal
angiograms were montaged. As illustrated in Fig. 11, the green and cyan thin-slabs contained
information from the two sets of flow signals (D, and D,,) on each side of the seam (dotted
white line). The difference (E(D,, D,,)) and correlation (Cor(D,, D,,)) between D, and D,, were
calculated by

1 L
E(D,,Dm):zZ|Mt(i) M, (i)
i=1

v, 1

Cor(D,,D,) =cor(M,,M (12)
I3 Wm

M, (i) =%Z(Dt(i,j)) M, (1) =35 (D, )

t Jj=1 m J=
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where, L is the length of the seams, cor(-) is the correlation calculation, W, = W,, = 2 pixels
are the width of the slab. My(7) and M,,(i) are the flow values of the i-th pixel on the target
portion and moving portion, separately. While M,(i) and M,,(i) are paired on the opposite
sides of the i-th position on the seam. The difference evaluates the smoothness of angiogram
on the mosaic edge, while correlation evaluates the vasculature continuity.

B
 }

Fig. 11. Illustration of the algorithm evaluation. Green and cyan lines illustrated both sides of
the seam between the target and moving images.

For comparison, we compared the proposed algorithm with the traditional montage
method. Previously, the matched points were obtained based on the invariant feature
descriptors and removing the outliers using RANSAC, which means the angiograms were
montaged without fine registration in local area, flow signal compensation and seamless
blending. Using the traditional approach, the angiograms appeared well montaged (Fig. 12
(A)) but vessels were not continuous across the seams (Fig. 12 (B)). In contrast, after
applying the proposed method, the montaged angiogram (Fig. 10 (A)) was more
homogeneous, the difference and correlation values were improved (Table 1), the vessels
were continuous, and the seam was not visible (Fig. 10 vs Fig. 12). The vessels were not
absolutely perpendicular to the seams, and the vessels patterns were not completely the same
at opposite sides of the seam. Taking these two main factors, which are consequence of the
scale over which correlation is computed and the amount of detail available, the correlation of
the proposed method cannot be particularly high anyways. We would expect it to be
considerably higher if the overlapping area was larger. However, the fact that the correlation
is improved with respect to the traditional method indicates that vessel connectivity is
improved at the stitched area.

Py

/\_
&

Fig. 12 Grossly montaged wide-field angiogram before matching verification in local area,
flow signal compensation and seamless blending. Five pixel mismatch was demonstrated.
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Table 1. Evaluation of the performance of the automated montage algorithm on 10
normal eyes by the correlation and mean square errors

Traditional Proposed Improvement value*
method method (%) p
Correlation
(Mean = std) 0.26+0.01 0.60 +0.04 130 0.008
Difference
(Mean * std) 0.036 £0.01 0.02 +0.002 44 0.008

* paired t-test was used to calculate the p-value

The affine transformation matrix estimated for the inner retinal angiogram could be used
to generate the wide-field angiograms on SVC, ICP, DCP and choriocapillaris (Fig. 13) after
projection artifacts were removed by PR-OCTA.

Fig. 13. Automated montaged angiogram on four slabs of PR-OCT angiography (2 scans). (A)
Superficial vascular complex. (B) Intermediate capillary plexus. (C) Deep capillary plexus. (D)
Choriocapillaris.

Next, sixteen 6 x 6-mm HD scans were obtained on a normal eye covering an ultra wide-
field of view [Fig. 14] and reaching the limit imposed by dilated pupil vignetting. Using the
algorithm proposed here, the montaged ultra wide-field angiogram was 15 x 20-mm, and the
sampling density was 15 um/pixel. Overviewing the angiogram, the vasculatures were
continuous and well connected, which verified the robustness of the bundle of angiograms
seamless stitching.
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Fig. 14. Ultra wide-field OCTA (15 x 20-mm) of a healthy eye registered and montaged by
sixteen 6 x 6-mm OCTA scans.

For DR cases (Fig. 15), 3 scans centered on the disc, macular, and temporal side of the
HD scan pattern were montaged using the proposed algorithm. The montaged wide-field
angiogram provided details of the capillary nonperfusion, demonstrating greater extent of
abnormalities in the temporal field. The individual scans could not provide equivalent
detailed contextualized information for evaluating the progression of vasculopathy.

Fig. 15. Montaged wide-field OCTA (6 x 15-mm,3 scans) of a diabetic retinopathy case. Three
scans centered on disc, fovea, and temporal were montaged using the algorithm described in
the text.

This method was also applied on the images acquired from DR patients on a 200-kHz
prototype swept source OCT angiography system, with wavelength centered at 1050nm. Four
10 x 8-mm scans, each with 800 x 400 A-scans, centered on the nasal, disc, macular, and
temporal areas were merged. Figure 16 demonstrates the four scans stitched seamlessly. The
montaged wide-field angiogram presented the detailed pathology, including both capillary
loss in nasal and temporal areas as well as the retinal neovascularization.
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Fig. 16. Montaged OCTA (10 x 25-mm, 4 scans) of the nasal, disc, macula and temporal
regions from an image of a diabetic retinopathy case acquired by a prototype OCT
angiography system. The white arrow highlights the vitreous neovascularization.

5. Discussion and conclusion

In this study, we developed an invariant features-based automated registration and montage
algorithm for wide-field OCT angiography, composed of four main steps: (1) detect the
invariant features including points of interest and their feature descriptors using the SURF
algorithm; (2) match the detected points of interest of the target image with the moving image
using their feature descriptors; (3) filter the inaccurate matches and apply the RANSAC
algorithm; (4) estimate the affine matrix to stitch the moving image on the target image. The
results show that the images were stitched seamlessly and ultra-wide-field OCTAs could be
generated.

Clinical studies have validated the benefit of wide-field OCTA over regular field of view
[35]. Wide-field OCTA allows clinicians to observe the overall vascular abnormalities,
including capillary dropout or neovascularization in the peripheral retina, preserving
visualization of the optic disc and macula. To achieve large fields of view by hardware
improvements, dynamic compensation of the defocusing on the peripheral retina by adaptive
optics would be necessary. The blending could generate a wide FOV angiogram with a very
even appearance. For individual scans, each had different brightness. By presenting them with
an even appearance, we don’t suggest that some areas have artefactual lower flow speed just
because their capillaries show up with lower decorrelation values. While this has been
demonstrated in single-scan, wide-field OCT, it has not been accomplished for OCTA thus
far. Currently, commercial systems like the RT-Vue XR OCTA have incorporated software
solutions to increase the field of view, such as montage of 6 x 6-mm angiograms of the
macula and optic disc only, without the processing necessary to eliminate the apparent seams.
To the best of our knowledge, no commercial software has incorporated a seamless montage
algorithm for generation of clean wide-field angiograms.

Among the feature descriptor algorithms published in the past decade, e.g. BRISK,
FREAK, SURF, KAZE, ORB — SURF descriptors generated using the Haar wavelet were
more appropriate to describe vasculature patterns. For invariant features detection, both SIFT
and SURF are very popular algorithms because they can locate the points of interest and
generate the feature descriptors based on the neighborhood. In practice, SIFT could had also
been used to perform the task assigned to SURF in our method. As a prior comparison has
indicated [36], SIFT is more robust to the scaling and rotation changes, while SURF is more
efficient and performs better on illumination changes. In our application, all scans were well
focused and acquired over the same area, minimizing changes owing to scaling and rotation
between adjacent scans. On the other hand, the strength of the flow signal is intensity
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dependent and would change considerably owing to reflectance variations between scans. As
Fig. 8 demonstrated, the strength of the flow signals on the overlapping area between two
scans can produce a very visible seam. Taking into account the factors above, SURF was
selected to detect the invariant features.

In the invariant features-based image registration task, RANSAC algorithm is usually
used to remove the outliers, but it fails when the number of outliers exceeds the inliers. In this
application, the images are composed of very rich vascular patterns and the image features are
highly similar, causing plenty of mismatches (as in Fig. 4). In this case, when we set an
iteration limitation, it is easy to reach to a wrong solution. To address this problem, we did a
further verification of the matches utilizing their scale, rotation and the correlation between
the surrounding areas. The number of inaccurate matches was greatly reduced, and only the
highly correlated matches were reserved (Fig. 6). Then RANSAC could remove the
remaining outliers to estimate the accurate affine matrix used to stitch the moving image onto
the target image.

There are a few limitations of the proposed automated seamless montage algorithm. An
overlapping area is required for registration to estimate affine matrix. The overlapping area of
the acquired data was 5 x 1-mm, but this is not the limitation of the proposed method. For the
success montage, the overlapping area could be as small as 2 x 1-mm on normal eye, which
was estimated by cropping the images to change the overlapping area. The other limitation is
that at least 3 matches were required for the affine transformation estimation. Consequently,
an inefficient number of angiograms need to be acquired from the subject in order to generate
the wide-field view. For images with low quality on which pair key points could not be
detected to match the features automatically, we can manually remove the mismatches or add
matches to improve the accuracy of the estimated affine transformation. In this instance, this
method would be a semi-automated, the further blending process could also be applied to
generate the seamless WF montaged angiogram.

In summary, this invariant features-based automated montage algorithm can stitch
multiple angiograms to generate a seamless wide-field angiogram, which provides an efficient
way to view the vascular changes in a wide FOV without requiring challenging hardware
updates or invasive imaging methods using contrast dye.

Funding

National Institutes of Health (ROl EY027833, ROl EY024544, RO1 EY023285, DP3
DK104397, P30 EY010572); unrestricted departmental funding grant and William & Mary
Greve Special Scholar Award from Research to Prevent Blindness (New York, NY).

Acknowledgments
We would like to thank Dr. Tristan Hormel for his constructive edit on this paper.
Disclosures

Oregon Health & Science University (OHSU), David Huang and Yali Jia, have a significant
financial interest in Optovue, Inc. These potential conflicts of interest have been reviewed and
managed by OHSU.

References

1. D.Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory,
C. A. Puliafito, and et, “Optical coherence tomography,” Science 254(5035), 1178—1181 (1991).

2. Y.lJia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger,
and D. Huang, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt.
Express 20(4), 4710-4725 (2012).

3. Y.lJia, S. T. Bailey, T. S. Hwang, S. M. McClintic, S. S. Gao, M. E. Pennesi, C. J. Flaxel, A. K. Lauer, D. J.
Wilson, J. Hornegger, J. G. Fujimoto, and D. Huang, “Quantitative optical coherence tomography angiography
of vascular abnormalities in the living human eye,” Proc. Natl. Acad. Sci. U.S.A. 112(18), E2395-E2402 (2015).



Research Article Vol. 10, No. 1| 1 Jan 2019 | BIOMEDICAL OPTICS EXPRESS 135 I

Biomedical Optics EXPRESS -~

4. Q. Zhang, C. S. Lee, J. Chao, C.-L. Chen, T. Zhang, U. Sharma, A. Zhang, J. Liu, K. Rezaei, K. L. Pepple, R.
Munsen, J. Kinyoun, M. Johnstone, R. N. Van Gelder, and R. K. Wang, “Wide-field optical coherence
tomography based microangiography for retinal imaging,” Sci. Rep. 6(1), 22017 (2016).

5. Q. Zhang, Y. Huang, T. Zhang, S. Kubach, L. An, M. Laron, U. Sharma, and R. K. Wang, “Wide-field imaging
of retinal vasculature using optical coherence tomography-based microangiography provided by motion
tracking,” J. Biomed. Opt. 20(6), 066008 (2015).

6. T. Hirano, S. Kakihara, Y. Toriyama, M. G. Nittala, T. Murata, and S. Sadda, “Wide-field en face swept-source
optical coherence tomography angiography using extended field imaging in diabetic retinopathy,” Br. J.
Ophthalmol. 2017, 311358 (2017).

7. M. Kimura, M. Nozaki, M. Yoshida, and Y. Ogura, “Wide-field optical coherence tomography angiography
using extended field imaging technique to evaluate the nonperfusion area in retinal vein occlusion,” Clin.
Ophthalmol. 10, 1291-1295 (2016).

8. J.Polans, B. Keller, O. M. Carrasco-Zevallos, F. LaRocca, E. Cole, H. E. Whitson, E. M. Lad, S. Farsiu, and J.
A. Izatt, “Wide-field retinal optical coherence tomography with wavefront sensorless adaptive optics for
enhanced imaging of targeted regions,” Biomed. Opt. Express 8(1), 16-37 (2016).

9. I. Polans, B. Jacken, R. P. McNabb, P. Artal, and J. A. Izatt, “Wide-field optical model of the human eye with
asymmetrically tilted and decentered lens that reproduces measured ocular aberrations,” Optica 2(2), 124-134
(2015).

10. A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based, robust, hierarchical algorithm for
registering pairs of images of the curved human retina,” IEEE Trans. Pattern Anal. Mach. Intell. 24(3), 347-364
(2002).

11. A. Can, C. V. Stewart, B. Roysam, and H. L. Tanenbaum, “A feature-based technique for joint, linear estimation
of high-order image-to-mosaic transformations: mosaicing the curved human retina,” IEEE Trans. Pattern Anal.
Mach. Intell. 24(3), 412-419 (2002).

12. A. Can, C. V. Stewart, and B. Roysam, “Robust hierarchical algorithm for constructing a mosaic from images of
the curved human retina,” in Computer Vision and Pattern Recognition, 1999. IEEE Computer Society
Conference on., (IEEE, 1999)

13. S. Lee, M. D. Abramoft, and J. M. Reinhardt, “Validation of retinal image registration algorithms by a projective
imaging distortion model,” in Engineering in Medicine and Biology Society, 2007. EMBS 2007. 29th Annual
International Conference of the IEEE, (IEEE, 2007), 6471-6474.

14. S. Lee, M. D. Abramoff, and J. M. Reinhardt, “Feature-based pairwise retinal image registration by radial
distortion correction,” in Medical Imaging 2007: Image Processing, (International Society for Optics and
Photonics, 2007), 651220.

15. C. V. Stewart, C.-L. Tsai, and B. Roysam, “The dual-bootstrap iterative closest point algorithm with application
to retinal image registration,” IEEE Trans. Med. Imaging 22(11), 1379—1394 (2003).

16. J. Chen, J. Tian, N. Lee, J. Zheng, R. T. Smith, and A. F. Laine, “A partial intensity invariant feature descriptor
for multimodal retinal image registration,” IEEE Trans. Biomed. Eng. 57(7), 1707-1718 (2010).

17. P. Zang, G. Liu, M. Zhang, C. Dongye, J. Wang, A. D. Pechauer, T. S. Hwang, D. J. Wilson, D. Huang, D. Li,
and Y. Jia, “Automated motion correction using parallel-strip registration for wide-field en face OCT
angiogram,” Biomed. Opt. Express 7(7), 2823-2836 (2016).

18. P.Zang, G. Liu, M. Zhang, J. Wang, T. S. Hwang, D. J. Wilson, D. Huang, D. Li, and Y. Jia, “Automated three-
dimensional registration and volume rebuilding for wide-field angiographic and structural optical coherence
tomography,” J. Biomed. Opt. 22(2), 26001 (2017).

19. P. Lukashevich, B. Zalesky, and S. Ablameyko, “Medical image registration based on SURF detector,” Pattern
Recognit. Image Anal. 21(3), 519-521 (2011).

20. M. Teke and A. Temizel, “Multi-spectral satellite image registration using scale-restricted SURF,” in Pattern
Recognition (ICPR), 2010 20th International Conference on, (IEEE, 2010), 2310-2313.

21. A. Eden, M. Uyttendaele, and R. Szeliski, “Seamless image stitching of scenes with large motions and exposure
differences,” in Computer Vision and Pattern Recognition, 2006 IEEE Computer Society Conference on, (IEEE,
2006), 2498-2505.

22. A.Levin, A. Zomet, S. Peleg, and Y. Weiss, “Seamless image stitching in the gradient domain,” in European
Conference on Computer Vision, (Springer, 2004), 377-389.

23. L. Juan and G. Oubong, “SURF applied in panorama image stitching,” in Image Processing Theory Tools and
Applications (IPTA), 2010 2nd International Conference on, (IEEE, 2010), 495-499.

24. M. Brown and D. G. Lowe, “Automatic panoramic image stitching using invariant features,” Int. J. Comput. Vis.
74(1), 59-73 (2007).

25. R. A.Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea distance,
axial length and parapapillary zones. The Beijing Eye Study 2011,” PLoS One 10(9), e0138701 (2015).

26. R. A.Jonas, Y. X. Wang, H. Yang, J. J. Li, L. Xu, S. Panda-Jonas, and J. B. Jonas, “Optic disc-fovea angle: the
Beijing Eye Study 2011,” PLoS One 10(11), e0141771 (2015).

27. M. F. Kraus, B. Potsaid, M. A. Mayer, R. Bock, B. Baumann, J. J. Liu, J. Hornegger, and J. G. Fujimoto,
“Motion correction in optical coherence tomography volumes on a per A-scan basis using orthogonal scan
patterns,” Biomed. Opt. Express 3(6), 1182—-1199 (2012).




Vol. 10, No. 1| 1 Jan 2019 | BIOMEDICAL OPTICS EXPRESS 136 I
Biomedical Optics EXPRESS -~

28. M. Zhang, J. Wang, A. D. Pechauer, T. S. Hwang, S. S. Gao, L. Liu, L. Liu, S. T. Bailey, D. J. Wilson, D.
Huang, and Y. Jia, “Advanced image processing for optical coherence tomographic angiography of macular
diseases,” Biomed. Opt. Express 6(12), 4661-4675 (2015).

29. J. Wang, M. Zhang, T. S. Hwang, S. T. Bailey, D. Huang, D. J. Wilson, and Y. Jia, “Reflectance-based
projection-resolved optical coherence tomography angiography [Invited],” Biomed. Opt. Express 8(3), 1536—
1548 (2017).

30. M. Zhang, T. S. Hwang, J. P. Campbell, S. T. Bailey, D. J. Wilson, D. Huang, and Y. Jia, “Projection-resolved
optical coherence tomographic angiography,” Biomed. Opt. Express 7(3), 816-828 (2016).

31. J. P. Campbell, M. Zhang, T. S. Hwang, S. T. Bailey, D. J. Wilson, Y. Jia, and D. Huang, “Detailed vascular
anatomy of the human retina by projection-resolved optical coherence tomography angiography,” Sci. Rep. 7(1),
42201 (2017).

32. H. Bay, A. Ess, T. Tuytelaars, and L. Van Gool, “Speeded-up robust features (SURF),” Comput. Vis. Image
Underst. 110(3), 346-359 (2008).

33. M. A. Fischler and R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to
image analysis and automated cartography,” Commun. ACM 24(6), 381-395 (1981).

34. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91-110
(2004).

35. Q. Zhang, C.-L. Chen, Z. Chu, and R. K. Wang, “Wide field OCT angiography by using swept source OCT in
living human eye,” in Ophthalmic Technologies XXVII, (International Society for Optics and Photonics, 2017),
100450V.

36. L. Juan and O. Gwun, “A comparison of sift, pca-sift and surf,” International Journal of Image Processing 3,
143-152 (2009).






